Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

L. Vijayalakshmi, ${ }^{\text {a }}$

V. Parthasarathi, ${ }^{\text {a* }}$ Bharat Varu ${ }^{\text {b }}$
and Anamik Shah
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and
${ }^{\mathbf{b}}$ Department of chemistry, Saurashtra University, Rajkot 360 005, India

Correspondence e-mail: sarati@bdu.ernet.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.144$
Data-to-parameter ratio $=8.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Cyano-4-[2-(4-methoxyphenyl)ethenyl]-6-methyl-2H-1-benzopyran-2-one

Benzopyran derivatives are known to possess various biological activities. In the title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}$, the benzopyran ring is essentially planar and the dihedral angle between the benzopyran and phenyl rings is $56.5(1)^{\circ}$. In the crystal, the carbonyl and methoxy O atoms are involved in weak $\mathrm{C}-\mathrm{H} \cdots$ O-type intermolecular interactions.

Comment

Many derivatives of benzopyran are found to possess medicinal and biological activities like antithrombotic effect, vasodilating effect on coronary vessels, tonic influence on capillary blood vessels, reduction in blood pressure, antispastic and photosensitizing effect (Borowiak \& Wolska, 1989). The structure determination of the title compound, (I), was undertaken as part our study on benzopyrans.

(I)

The benzopyran ring is planar, with a maximum deviation of -0.024 (3) \AA for C3. The dihedral angle between the phenyl and benzopyran rings is $56.5(1)^{\circ}$. The alternate single and double bonds between O 2 and $\mathrm{C} 10[\mathrm{O} 2=\mathrm{C} 21.213$ (4), $\mathrm{C} 2-$ C3 1.449 (5), C3 $=\mathrm{C} 41.372$ (4) and $\mathrm{C} 4-\mathrm{C} 101.443$ (4) \AA] indicate conjugation (Allen et al., 1987; Alcock \& Hough, 1972). The coplanarity of the methoxy carbon with the phenyl ring $\left[\mathrm{C} 16-\mathrm{C} 15-\mathrm{O} 19-\mathrm{C} 201.6(5)^{\circ}\right]$ results in a close approach between C 20 and $\mathrm{C} 16[2.807$ (5) \AA A and this causes the widening of $\mathrm{C} 16-\mathrm{C} 15-\mathrm{O} 19\left[125.3(3)^{\circ}\right]$ and narrowing of $\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 19$ [114.8 (3) ${ }^{\circ}$] from 120° (Sheldrick et al., 1980; Koetzle \& Williams, 1976; Sakaki et al., 1976). Steric interactions cause the deviation of $\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5\left[123.7\right.$ (3) ${ }^{\circ}$] and $\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8\left[116.7(3)^{\circ}\right]$ angles from 120°, a common feature observed in coumarin derivatives (Ramasubbu, 1982; Ramasubbu et al., 1982; Borowiak \& Wolska, 1989). In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots$ O-type intermolecular interactions involving O2 and O19 are observed (Jeffrey \& Saenger, 1991).

Received 2 January 2001 Accepted 6 February 2001 Online 19 February 2001

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.

Experimental

A 3-cyano-4,6-dimethyl-2H-1-benzopyran-2-one (0.01 mol) and 4methoxybenzaldehyde $(0.01 \mathrm{~mol})$ mixture was dissolved in chloroform ($75-80 \mathrm{ml}$) and a few drops of piperidine ($8-10$ drops) were added as a catalyst. The mixture was heated with stirring for $15-16 \mathrm{~h}$. After evaporation, the solid residue was recrystallized from dimethylformamide to give white crystals [m.p. 484 K ; yield 56%].

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3} \\
& M_{r}=317.33 \\
& \text { Orthorhombic, } P_{2} 2_{1} 2_{1}{ }_{1} \\
& a=7.8683(12) \AA \\
& b=7.913(2) \AA \\
& c=26.0869(11) \AA \\
& V=1624.1(5) \AA^{3} \\
& Z=4 \\
& D_{x}=1.298 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2-25^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, white
$0.20 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}$ not measured
\quad ometer	$\theta_{\max }=69.8^{\circ}$
$\omega-2 \theta$ scans	$h=0 \rightarrow 9$
Absorption correction: ψ scan	$k=0 \rightarrow 9$
\quad (North et al., 1968)	$l=0 \rightarrow 31$
$T_{\min }=0.875, T_{\max }=0.930$	3 standard reflections
1805 measured reflections	every 60 reflections
1804 independent reflections	intensity decay: 0.1%

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0837 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$+0.2613 P$]
$w R\left(F^{2}\right)=0.144$
$S=1.17$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.009$
1804 reflections
222 parameters H -atom parameters constrained
$\Delta \rho_{\max }=0.26 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0079 (11)

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.67	$3.406(4)$	137
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.55	$3.365(4)$	147
${\mathrm{C} 22-\mathrm{H} 222 \cdots \mathrm{O} 19^{\mathrm{ii}}}^{2}$	0.96	2.61	$3.566(4)$	173

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\frac{5}{2}-x, 1-y, z-\frac{1}{2}$.

All H atoms were fixed using geometrical considerations and their isotropic displacement parameters were refined as two values, one for methyl- H atoms and the other for remaining H atoms. The absolute configuration is indeterminate for the title compound.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP97 (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

LV thanks the University Grants Commission, India, for the award of a Minor Research Project during 1997-1999 and thanks Dr Babu Vergheese, RSIC, Indian Institute of Technology, Chennai, for his assistance in data collection.

References

Alcock, N. W. \& Hough, E. (1972). Acta Cryst. B28, 1957-1960.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Borowiak, T. \& Wolska, I. (1989). Acta Cryst. C45, 620-622.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Jeffrey, G. A. \& Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
Koetzle, T. F. \& Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074-2078.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ramasubbu, N.(1982). PhD Thesis, Indian Institute of Science, Banglaore, India.
Ramasubbu, N., Guru Row, T. N., Venkatesan, K., Ramamurthy, V. \& Rao, C. N. R. (1982). J. Chem. Soc. Chem. Commun. pp. 178-179.

Sakaki, T., Sogo, A., Wakahara, A., Kanai, T., Fujiwara, T. \& Tomita, K. (1976). Acta Cryst. B32, 3235-3242.
Sheldrick, B., Akrigg, D. \& Geddes, A. J. (1980). Cryst. Struct. Commun. 9, 999-1004.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zsolnai, L. (1997). ZORTEP97. University of Heidelberg, Germany.

